Volume 10, Issue 04, April 2024, Publish Date: 29-04-2024 Doi https://doi.org/10.55640/ijmsdh-10-04-32

International Journal of Medical Science and Dental Health

(Open Access)

HEPATIC ENZYMES AND PROTEINS AS PROGNOSTIC FACTORS IN LIVER DISEASE MANAGEMENT

W T. H. AL-SHAMMARI¹, REAM ISMAIL ABED², HANAN HUSSEIN ALI³

^{1,2,3} Al-Karkh University of Science

ABSTRACT

Therefore, an article reviewing a hepatic enzyme/protein prognosis in liver disease studies is presented. Hepatocytic enzymes such as Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) being highly contributory indicators demonstrate mild to severe active liver inflammation and damage. Compared to this, it is worth noting that the so-called proteins which are referred to as albumin and alpha-fetoprotein (AFP) provide data on liver function and the severity of the disease, mainly in HCC (hepatocellular carcinoma).

The review clarifies the role of these biomarkers in clinical practice attributing them to various indicators such as diagnosis, disease differentiation, treatment monitoring, and prognosis assessment. Difficulties, including variability, sensitivity problems, and complexity on the interpretation of results, are pointed out, showing the necessity of enhanced diagnosis tehnologies and personalized medicine strategies.

The future of liver disease management concentrates on biomarker identification, better diagnostic equipment, embedding artificial intelligence, personized treatment, and involving authorities. The objective is to improve diagnostic accuracy, guid treatment outcomes, and apply ethics in genetic information.

In summary, these pioneering technologies have the potential to make a substantial contribution to the level of liver disease treatment, provided that we address the connected problems, which will consequently result in better patients' outcomes and quality of care.

INTRODUCTION

Liver diseases which cover a wide spectrum of conditions from hepatitis to cirrhosis and liver cancer at all are one of the major population health issues across the globe. Prediction of acute and unknown conditions crucial for efficient detection and treatment are based on early and timely availing of the disease progression and outcomes. Along with this, prognostic factors are seen as being very important in this regard, with data on what the likely course of disease can offer, thus informing treatments and clinical decision making ⁽¹⁻⁴⁾.

Liver specific prognostic factors in the management of liver diseases include above all determinants such as hepatocellular enzymes and proteins. The genetic markers of hepatic toxicity are the cornerstone of danger history of these liver conditions. The enzymes present in liver - specifically alanine aminotransferase (ALT) and aspartate aminotransferase (AST) - are the most frequently used markers for the determination of liver function and damage. Therefore, ESR and proteins such as albumin and alpha-fetoprotein are indicators of the liver status as well as the amount of damage ⁽⁵⁾.

One of the main tasks of this review article is to explore the function of hepatic enzymes and proteins as clinical markers in liver disease. Through the evaluation of their diagnostic value, mode of action, and the most outstanding studies on the topic, this review tries to update professionals that are involved in the fight against hepatic impairment on how to manage effectively such a problem. Meanwhile, by demonstrating the current existing applications plus the future developments in the sector, exploration will also be done.

Role of Hepatic Enzymes in Liver Disease

Hepatic enzymes are a type of biochemical marker that are involved in liver pathophysiology through various mechanisms. These enzymes often determine the hepatic condition and their management. These hepatocellular enzymes, which seep into the bloodstream due to a liver damage, comprise the liver cells, thus, offering very important pieces of information on the state and the kind of injury ⁽⁶⁻⁹⁾.

Overview of Key Hepatic Enzymes

The most important hepatic enzymes include (10):

- Alanine Aminotransferase (ALT): Primarily found in the liver, elevated levels of ALT in the blood often suggest liver damage.
- Aspartate Aminotransferase (AST): Although present in various tissues including heart and muscles, AST is also a marker for liver damage when elevated disproportionately.
- Alkaline Phosphatase (ALP): Rise cases in bile duct conditions and also the liver.
- Gamma-glutamyl Transferase (GGT): Usually used to envision liver ailment and difference between liver and bone illness.

Enzyme	Primary Location	Function in Liver	Significance of Elevation	Typical Diseases	Diagnostic Value
				Associated	
Alanine	Liver	Involved in	Often	Viral hepatitis,	High specificity
Aminotransferase		amino acid	indicates liver	fatty liver	to liver
(ALT)		metabolism;	cell injury or	disease, liver	damage; used
		converts	inflammation.	injury.	to detect and
		alanine and α -			monitor
		ketoglutarate			disease
		into pyruvate			progress.
		and			
		glutamate.			

Table 1 (Comprehensive Overview of Key Hepatic Enzymes in Liver Disease Diagnosis and Management)

Aspartate Aminotransferase (AST)	Liver, heart, muscles, kidneys	Participates in the conversion of aspartate and α - ketoglutarate to oxaloacetate and glutamate.	Can indicate liver damage but less liver- specific than ALT.	Hepatitis, cirrhosis, liver injury, muscle diseases.	Often measured alongside ALT to assess liver injury; AST/ALT ratio can indicate specific types of liver disease.
Alkaline	Liver,	Important for	High levels	Cholestasis,	Useful in
Phosnhatase	hone	hreaking	may indicate	hile duct	diagnosing
(ALP)	kidnev	down	hile duct	obstruction	cholestatic
	intectine	uowii muotoine	obstruction or		choicstatte
	intestine	proteins;	obstruction or	nver cancer.	conditions of
		higher activity	liver damage.		the liver.
		in bile duct			
		cells.			
Gamma-glutamyl	Liver,	Involved in	Elevated	Biliary	Particularly
Transferase	kidney,	the transfer of	levels can	obstruction,	valuable for
(GGT)	pancreas	amino acids	indicate liver	alcoholic liver	diagnosing
	1	across the	disease. bile	disease.	biliary diseases
		cellular	duct issues. or	hepatocellular	and
		membrane	excessive	damage	distinguishing
		and in	alcohol	uunuge	hetween
		glutathiono	consumption		honatic and
		giutatilioile	consumption.		
		metabolism.			bone disease
					causes of
					elevated ALP.

Mechanisms and Pathways Affected by Hepatic Enzymes

Hepatic enzymes are involved in numerous metabolic pathways essential for liver function, including:

- **Amino Acid Metabolism:** ALT and AST are involved in the transamination process, crucial for synthesizing non-essential amino acids ⁽¹¹⁾.
- **Glucose Metabolism:** Enzymes help in gluconeogenesis, a process where glucose is produced from non-carbohydrate sources ⁽¹²⁾.
- **Detoxification:** Liver enzymes play a key role in detoxifying substances, ensuring harmful toxins are converted into less harmful products before being excreted ⁽¹³⁾.

This process of quantification gives the chance to evaluate the metabolic state of the organ of the digestion. On the other hand, marked enzyme increase might imply hepatic inflammation, necrosis, or cholestasis, and the enzyme in question along with magnitude of increase determines the cause.

Clinical Significance of Hepatic Enzyme Levels

Elevated hepatic enzyme levels can indicate various forms of liver disease ⁽¹⁴⁾:

- Hepatitis: Viral or alcoholic hepatitis typically show elevated ALT and AST levels.
- **Fatty Liver Disease:** Characterized by moderate elevations in ALT and AST.
- **Cirrhosis:** Later stages may show altered levels due to significant liver damage.

Protein Markers in Liver Disease

Protein days satisfy the purpose of evaluation of the status of the hepatitis disease and its progression. They can provide either functional trend of liver cells or give hint for the outcome of liver diseases and then organize a quantitative assessment of the treatment plan if needed ⁽¹⁵⁾.

Types of Hepatic Proteins and Their Functions

Albumin ^(16, 17).

- Function: Maintains oncotic pressure and transports hormones, vitamins, and drugs.
- **Clinical Significance:** Low levels can indicate chronic liver disease or cirrhosis, reflecting decreased synthetic function of the liver.

Alpha-fetoprotein (AFP) ⁽¹⁸⁾.

- **Function:** Produced in the liver of developing embryos, its levels drop significantly after birth.
- **Clinical Significance:** Elevated levels are often associated with hepatocellular carcinoma (HCC) and, to a lesser extent, with germ cell tumors of the ovary and testis.

Fibrinogen ⁽¹⁹⁾.

- Function: Plays a critical role in blood clotting.
- **Clinical Significance:** Reduced levels may be seen in severe liver disease due to impaired synthesis.

Protein Biomarkers for Disease Progression and Outcome Prediction

C-reactive protein (CRP) ⁽²⁰⁾.

- **Role:** An acute-phase reactant used to measure inflammation.
- **Utility in Liver Diseases:** Elevated in inflammatory conditions; assists in distinguishing between inflammatory and non-inflammatory diseases.

Ceruloplasmin ⁽²¹⁾.

- Role: Essential for iron metabolism; carries more than 95% of the total copper in healthy human plasma.
- Utility in Liver Diseases: Levels are decreased in Wilson's disease, a genetic disorder affecting copper metabolism in the liver.

Clinical Applications of Protein Markers

These proteins not only help in diagnosing liver conditions but are also pivotal in assessing disease severity and prognosis. For instance:

- **Albumin levels** are used to calculate the Child-Pugh score, a prognostic indicator for chronic liver disease and cirrhosis that predicts survival.
- **AFP levels** are part of diagnostic criteria for HCC and are used to monitor treatment response or recurrence after therapy.

Table 2 (Kev Protein	Markers and Their Role	s in the Diaanosis an	d Manaaement o	f Liver Disease.)
	markers and men none	s in the Diagnosis an	a management o	

Protein	Primary	Clinical	Associated	Role in	Typical
Marker	Function	Significance	Liver	Disease	Diagnostic
			Conditions	Management	Usage
Albumin	Maintains	Indicator of	Cirrhosis,	Used to	Monitoring
	oncotic	synthetic liver	chronic	calculate	liver function
	pressure and	function; low	hepatitis, liver	Child-Pugh	and
	transports	levels suggest	failure.	score for	nutritional
	various	chronic liver		assessing	status.
	substances.	disease.		disease	
				severity and	
				prognosis.	
Alpha-	Embryonic	Elevated	Hepatocellular	Screening for	Diagnostic
fetoprotein	liver protein,	levels suggest	carcinoma,	HCC,	marker in
(AFP)	decreases	hepatocellular	liver	monitoring	liver cancer
	after birth.	carcinoma	regeneration	treatment	protocols.
		(HCC).	post-injury.	response or	
				recurrence.	
Fibrinogen	Essential for	Decreased	Advanced liver	Assessing liver	Part of liver
	blood clot	production	disease,	synthetic	function tests
	formation.	indicates	cirrhosis.	function,	to evaluate
		impaired liver		especially in	coagulation
		synthesis		severe liver	status.
		capacity.		pathology.	
C-reactive	Acute phase	Elevated	Acute	Differentiating	Used in
protein (CRP)	reactant	levels can	hepatitis,	inflammatory	conjunction
	indicating	indicate	alcoholic	from non-	with other
	inflammation.	inflammatory	hepatitis, liver	inflammatory	tests to assess
		liver diseases.	abscesses.	liver	liver
	0	x 1 1	X 4 7+1 I	conditions.	inflammation.
Ceruloplasmin	Copper-	Low levels are	Wilson's	Diagnostic and	Screening and
	carrying	diagnostic of	alsease,	monitoring	alagnosis of
	protein	Wilson S	chronic liver	tool lor	Wilson S
	crucial for	uisease.	alsease	wiison s	uisease in
	Iron		affecting	ulsease and	suspected
	metabolism.		copper	copper	cases.
			metabolism.	disordorg	
				alsoraers.	

Clinical Applications of Enzymatic and Protein Markers

Enzymatic and protein markers play pivotal roles in the clinical setting, particularly in the diagnosis, management, and monitoring of liver diseases. Their applications span from initial diagnosis to detailed prognostication and therapeutic monitoring.

Diagnostic Tools and Techniques

Initial Screening and Diagnosis

- **Enzymes such as ALT and AST:** Used to detect liver damage. Elevated levels can indicate acute liver injury or chronic liver disease.
- **Proteins like AFP:** Serve as biomarkers for hepatocellular carcinoma (HCC). High levels can prompt further diagnostic imaging and biopsy.

Differentiating Liver Diseases

- **GGT and ALP:** Useful in distinguishing between hepatic and bone disease when ALP is elevated, as GGT is more specific to the liver.
- **CRP:** Helps differentiate inflammatory from non-inflammatory liver diseases due to its sensitivity to inflammation.

Case Studies and Clinical Evidence

Hepatitis Management

• Elevated ALT and AST levels are often seen in viral hepatitis. Monitoring these enzymes helps assess the severity of infection and response to antiviral therapy.

Cirrhosis Monitoring

• Albumin and prothrombin time: Important for assessing liver synthetic function and for staging cirrhosis using the Child-Pugh score. This score helps determine prognosis and appropriate management strategies.

Monitoring Therapeutic Efficacy

Following Treatment Response in HCC

• **AFP:** A decrease in AFP levels after treatment (e.g., resection, chemotherapy) suggests a good response, whereas increasing levels may indicate recurrence.

Post-Transplant Monitoring

• **Liver enzymes:** Regular monitoring post-liver transplant helps quickly identify complications such as graft rejection or infection.

Prognostic Value in Clinical Outcomes

Predicting Surgical Outcomes

• **Pre-operative levels of bilirubin, albumin, and INR:** Can predict surgical risks and post-operative liver function in patients undergoing liver surgery.

Guiding Clinical Decisions

• The integration of enzyme and protein levels into clinical algorithms (e.g., MELD score) aids in critical decisions like prioritization for liver transplantation.

Challenges and Limitations

Despite the valuable insights provided by hepatic enzymes and protein markers in liver disease management, several challenges and limitations affect their clinical utility.

Challenge Category	Specific Issue	Impact on Diagnosis/Management	Example Markers Affected	Potential Solution or Consideration
Specificity Issues	Non-specific elevations	Complicates diagnosis; may lead to misdiagnosis	AST (also found in muscles)	Use in conjunction with specific clinical assessments and other specific
Variability	Inter- individual differences	Could lead to over- or underestimation of liver disease severity	ALT, Albumin	markers Develop personalized reference ranges based on demographics and health background
Sensitivity Limitations	Inadequate early disease detection	Delay in diagnosis until disease progression	AFP (low sensitivity in early HCC)	Research and validate more sensitive biomarkers for early detection
Dynamic Changes	Fluctuations due to external factors	Makes consistent monitoring challenging	All liver enzymes (e.g., influenced by diet, medication)	Standardize testing conditions and timing relative to external factors
Technological Constraints	Variations in lab standards	Results inconsistency across different facilities	All markers	Implement standardized protocols and calibration across testing sites
Access Issues	Limited testing availability in some regions	Delays in diagnosis and management, especially in remote areas	All markers, especially advanced protein assays	Improve infrastructure and access to portable, cost-effective testing technologies

Table 3 (Challenges and Limitations.)

Interpretational	Need for	Risk of misinterpretation if	All enzymes	Training in
Complexity	comprehensive	considered in isolation	and proteins	integrated
	evaluation			diagnostics and
				decision support
				systems

Table 4 (Future Directions in Liver Disease Management: Advancements and Considerations.)

Focus Area	Key	Potential	Example	Considerations
	Development	Impact	Applications	
Enhanced	Identification of	Improved	Genetic markers,	Rigorous validation
Biomarker	novel biomarkers	early detection	microRNA panels.	and standardization
Discovery	with enhanced	and accurate		of new biomarkers.
	specificity and	monitoring of		
	sensitivity.	liver diseases.		
Advanced	Non-invasive	Enhanced	Elastography,	Training healthcare
Diagnostic	imaging	diagnostic	contrast-enhanced	professionals for
Technologies	modalities for	capabilities	ultrasound.	optimal utilization of
	detailed liver	without		advanced imaging
	assessment.	invasive		techniques.
		procedures.		_
Integration of	AI-driven analysis	Enhanced	Machine learning	Ethical use of patient
Artificial	of biomarker	accuracy in	models, digital	data and ensuring
Intelligence	patterns for	disease	health platforms.	algorithm
	precise diagnosis	prediction and		transparency.
	and prognosis.	treatment		
		planning.		
Personalized	Tailoring	Optimized	Individualized	Consideration of
Medicine	treatment	therapeutic	drug regimens,	patient preferences
Approaches	strategies based	outcomes and	precision medicine	and cost-
	on individual	minimized	in transplantation.	effectiveness of
	biomarker	side effects.		personalized
	profiles.			treatments.
Regulatory and	Establishing	Ensuring	Standardization of	Collaboration among
Ethical	international	consistency,	testing protocols,	regulatory bodies
Considerations	standards for	reliability, and	ethical guidelines	and healthcare
	biomarker testing	ethical	for genetic data	organizations for
	and ethical use of	handling of	use.	global standards
	genetic	biomarker		implementation.
	information.	data.		

CONCLUSION

In conclusion, the future of liver disease management is characterized by innovation, integration of cutting-edge technologies, and a commitment to personalized, patient-centric care. By embracing these advancements and addressing the associated challenges, healthcare professionals can enhance their

ability to diagnose, treat, and monitor liver diseases more effectively, ultimately improving patient outcomes and quality of life.

REFERENCES

- 1. Marcellin P, Kutala BK. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 2018;38 Suppl 1:2-6.
- 2. Wazir H, Abid M, Essani B, Saeed H, Ahmad Khan M, Nasrullah F, et al. Diagnosis and Treatment of Liver Disease: Current Trends and Future Directions. Cureus. 2023;15(12): e49920.
- 3. Al-Karawi AS, Abid FM, Mustafa A, Abdulla M. Revealing the Urinary Microbiota in Prostate Cancer: A Comprehensive Review Unveiling Insights into Pathogenesis and Clinical Application. Al-Salam Journal for Medical Science. 2024;3(1):45-54.
- 4. Mohammed AA, Mahmoud HQ, Mhana RS. ADVANCES IN THE DIAGNOSIS AND MANAGEMENT OF BREAST CANCER: A SYSTEMATIC REVIEW. World. 2023;2(6).
- 5. Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014;147(4):765-83. e4.
- 6. Satué K, Miguel-Pastor L, Chicharro D, Gardón JC. Hepatic Enzyme Profile in Horses. Animals (Basel). 2022;12(7).
- 7. Alajeeli FS, Al-Karawi AS, Ali MM. The Immunological Significance of Medicinal Plants in Disease Control and Prevention in Humans. Al-Salam Journal for Medical Science. 2023;2(2):13-9.
- 8. Asaad LA, Al-Shimary AA, AL-Azzawi MA, Al-Karawi AS, Rasool KH. The Relationship between Renal Impairment and Specific Laboratory Markers: A Comprehensive Investigation Focusing on Athletes. Journal for ReAttach Therapy and Developmental Diversities. 2023;6(8s):452-8.
- 9. Ahmed MH, Karkush SI, Ali SA, Mohammed AA. Phytochemicals: a new arsenal in drug discovery. International Journal of Medical Science and Dental Health. 2024;10(01):29-44.
- 10. Lala V, Zubair M, Minter D. Liver function tests. StatPearls. 2023.
- 11. Sookoian S, Pirola CJ. Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol. 2012;18(29):3775-81.
- 12. Melkonian EA, Asuka E, Schury MP. Physiology, gluconeogenesis. 2019.
- 13. Grant DM. Detoxification pathways in the liver. J Inherit Metab Dis. 1991;14(4):421-30.
- 14. Kalas MA, Chavez L, Leon M, Taweesedt PT, Surani S. Abnormal liver enzymes: A review for clinicians. World J Hepatol. 2021;13(11):1688-98.
- Peng L, Gao ZL, Wang YM, He DM, Zhao JM, Bai XF, et al. Clinical Manifestations and Laboratory Tests of AECHB and Severe Hepatitis (Liver Failure): Acute Exacerbation of Chronic Hepatitis B. 2019 May 21:1-89. doi: 10.1007/978-94-024-1603-9_1.
- 16. Bernardi M, Maggioli C, Zaccherini G. Human albumin in the management of complications of liver cirrhosis. Crit Care. 2012;16(2):211.
- 17. Al-Azzawi MA, Maftool AJ, Al-Shimary AA, Mohammed AA. A Comprehensive Review of Vitamin D3: Metabolism, Functions, and Clinical Implications. International Journal of Medical Science and Dental Health. 2023;9(12):37-46.

- 18. Głowska-Ciemny J, Szymanski M, Kuszerska A, Rzepka R, von Kaisenberg CS, Kocyłowski R. Role of Alpha-Fetoprotein (AFP) in Diagnosing Childhood Cancers and Genetic-Related Chronic Diseases. Cancers (Basel). 2023;15(17).
- 19. Islam R, Kundu S, Jha SB, Rivera AP, Flores Monar GV, Islam H, et al. Cirrhosis and Coagulopathy: Mechanisms of Hemostasis Changes in Liver Failure and Their Management. Cureus. 2022;14(4): e23785.
- 20. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol. 2018; 9:754.
- 21. Roeser HP, Lee GR, Nacht S, Cartwright GE. The role of ceruloplasmin in iron metabolism. J Clin Invest. 1970;49(12):2408-17.