References
National Nanotechnology Initiative. (2015). National Science and Technology Council. Committee on Technology, Subcommittee on Nanoscale Science, National Technology Initiative Strategic Plan.
Moritz, M., & Geszke-Moritz, M. (2013). The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chemical Engineering Journal, 228, 596-613.
Ahmad, S. A., Das, S. S., Khatoon, A., Ansari, M. T., Afzal, M., Hasnain, M. S., & Nayak, A. K. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 3, 756-769.
Massa, M. A., Covarrubias, C., Bittner, M., Fuentevilla, I. A., Capetillo, P., Von Marttens, A., & Carvajal, J. C. (2014). Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Materials Science and Engineering: C, 45, 146-153.
Teodoro, J. S., Simões, A. M., Duarte, F. V., Rolo, A. P., Murdoch, R. C., Hussain, S. M., & Palmeira, C. M. (2011). Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective. Toxicology invitro, 25(3), 664-670
Baranowska-Wójcik, E., Szwajgier, D., Oleszczuk, P., & Winiarska-Mieczan, A. (2020). Effects of titanium dioxide nanoparticles exposure on human health—a review. Biological trace element research, 193, 118-129.
Gulumian, M., & Cassee, F. R. (2021). Safe by design (SbD) and nanotechnology: a much-discussed topic with a prudence?. Particle and Fibre Toxicology, 18, 1-4.
.Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K., & Upadhyay, S. N. (2016). Green synthesis of silver nanoparticles: a review. Green and Sustainable Chemistry, 6(1), 34-56.
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances, 27(1), 76-83.
Bagherzade, G., Tavakoli, M. M., & Namaei, M. H. (2017). Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pacific Journal of Tropical Biomedicine, 7(3), 227-233.
Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific journal of tropical biomedicine, 2(7), 574-580.
Roni, M., Murugan, K., Panneerselvam, C., Subramaniam, J., & Hwang, J. S. (2013). Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitology Research, 112, 981-990.
Tippayawat, P., Phromviyo, N., Boueroy, P., & Chompoosor, A. (2016). Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ, 4, e2589.
Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and surfaces B: Biointerfaces, 79(2), 488-493.
Peralta-Videa, J. R., Huang, Y., Parsons, J. G., Zhao, L., Lopez-Moreno, L., Hernandez-Viezcas, J. A., & Gardea-Torresdey, J. L. (2016). Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?. Nanotechnology for Environmental Engineering, 1, 1-29.
Buser, D., Sennerby, L., & De Bruyn, H. (2017). Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology 2000, 73(1), 7-21.
Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 275(1), 177-182.
Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., ... & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, biology and medicine, 3(1), 95-101.
Peralta-Videa, J. R., Huang, Y., Parsons, J. G., Zhao, L., Lopez-Moreno, L., Hernandez-Viezcas, J. A., & Gardea-Torresdey, J. L. (2016). Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?. Nanotechnology for Environmental Engineering, 1, 1-29.
Mohammed, Ali Abdulmawjood, et al. "Molecular insights into the inhibition of early stages of Aβ peptide aggregation and destabilization of Alzheimer's Aβ protofibril by dipeptide D-Trp-Aib: A molecular modelling approach." International Journal of Biological Macromolecules 242 (2023): 124880.
Kapat, K., Srivas, P. K., Rameshbabu, A. P., Maity, P. P., Jana, S., Dutta, J., ... & Dhara, S. (2017). Influence of porosity and pore-size distribution in Ti6Al4 V foam on physicomechanical properties, osteogenesis, and quantitative validation of bone ingrowth by micro-computed tomography. ACS applied materials & interfaces, 9(45), 39235-39248.
Yelick, P. C., & Sharpe, P. T. (2019). Tooth bioengineering and regenerative dentistry. Journal of dental research, 98(11), 1173-1182.
Khoshroo, K., Kashi, T. S. J., Moztarzadeh, F., Tahriri, M., Jazayeri, H. E., & Tayebi, L. (2017). Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. Materials Science and Engineering: C, 70, 586-598.
Rasoulianboroujeni, M., Fahimipour, F., Shah, P., Khoshroo, K., Tahriri, M., Eslami, H., ... & Tayebi, L. (2019). Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Materials Science and Engineering: C, 96, 105-113.
Li, Z., Qiu, J., Du, L. Q., Jia, L., Liu, H., & Ge, S. (2017). TiO2 nanorod arrays modified Ti substrates promote the adhesion, proliferation and osteogenic differentiation of human periodontal ligament stem cells. Materials Science and Engineering: C, 76, 684-691.
Chang, B., Song, W., Han, T., Yan, J., Li, F., Zhao, L., ... & Zhang, Y. (2016). Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta biomaterialia, 33, 311-321.
Chen, Z., Yan, X., Yin, S., Liu, L., Liu, X., Zhao, G., ... & Fang, H. (2020). Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Materials Science and Engineering: C, 106, 110289.
Kamble, Subodh A., et al. "Structural insights into the potential binding sites of Cathepsin D using molecular modelling techniques." Amino Acids 56.1 (2024): 33.
Chen, B., You, Y., Ma, A., Song, Y., Jiao, J., Song, L., ... & Li, C. (2020). Zn-incorporated TiO2 nanotube surface improves osteogenesis ability through influencing immunomodulatory function of macrophages. International Journal of Nanomedicine, 2095-2118.
Moon, K. S., Park, Y. B., Bae, J. M., Choi, E. J., & Oh, S. H. (2021). Visible light-mediated sustainable antibacterial activity and osteogenic functionality of au and pt multi-coated tio2 nanotubes. Materials, 14(20), 5976.
Li, Y., Wang, W., Liu, H., Lei, J., Zhang, J., Zhou, H., & Qi, M. (2018). Formation and in vitro/in vivo performance of “cortex-like” micro/nano-structured TiO2 coatings on titanium by micro-arc oxidation. Materials Science and Engineering: C, 87, 90-103.
Dias-Netipanyj, M. F., Cowden, K., Sopchenski, L., Cogo, S. C., Elifio-Esposito, S., Popat, K. C., & Soares, P. (2019). Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation. Materials Science and Engineering: C, 103, 109850.
Dias-Netipanyj, M. F., Sopchenski, L., Gradowski, T., Elifio-Esposito, S., Popat, K. C., & Soares, P. (2020). Crystallinity of TiO 2 nanotubes and its effects on fibroblast viability, adhesion, and proliferation. Journal of Materials Science: Materials in Medicine, 31, 1-11.
Li, K., Liu, S., Xue, Y., Zhang, L., & Han, Y. (2019). A superparamagnetic Fe 3 O 4–TiO 2 composite coating on titanium by micro-arc oxidation for percutaneous implants. Journal of Materials Chemistry B, 7(34), 5265-5276.
Xu, R., Hu, X., Yu, X., Wan, S., Wu, F., Ouyang, J., & Deng, F. (2018). Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells. International Journal of Nanomedicine, 5045-5057.
Zhao, X., You, L., Wang, T., Zhang, X., Li, Z., Ding, L., ... & Li, B. (2020). Enhanced osseointegration of titanium implants by surface modification with silicon-doped titania nanotubes. International Journal of Nanomedicine, 8583-8594.
Huang, J., Zhang, X., Yan, W., Chen, Z., Shuai, X., Wang, A., & Wang, Y. (2017). Nanotubular topography enhances the bioactivity of titanium implants. Nanomedicine: Nanotechnology, Biology and Medicine, 13(6), 1913-1923.
Zhao, X., You, L., Wang, T., Zhang, X., Li, Z., Ding, L., ... & Li, B. (2020). Enhanced osseointegration of titanium implants by surface modification with silicon-doped titania nanotubes. International Journal of Nanomedicine, 8583-8594.
Sabino, R. M., Mondini, G., Kipper, M. J., Martins, A. F., & Popat, K. C. (2021). Tanfloc/heparin polyelectrolyte multilayers improve osteogenic differentiation of adipose-derived stem cells on titania nanotube surfaces. Carbohydrate polymers, 251, 117079.
Yang, J., Zhang, H., Chan, S. M., Li, R., Wu, Y., Cai, M., ... & Wang, Y. (2020). TiO2 nanotubes alleviate diabetes-induced osteogenetic inhibition. International Journal of Nanomedicine, 3523-3537.
Nishimura, K., Shindo, S., Movila, A., Kayal, R., Abdullah, A., Savitri, I. J., ... & Kawai, T. (2016). TRAP-positive osteoclast precursors mediate ROS/NO-dependent bactericidal activity via TLR4. Free Radical Biology and Medicine, 97, 330-341.
Yu, Y., Shen, X., Luo, Z., Hu, Y., Li, M., Ma, P., ... & Cai, K. (2018). Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment. Biomaterials, 167, 44-57.
Mohammed, Ali Abdulmawjood, and Kailas D. Sonawane. "Destabilizing Alzheimer's Aβ42 protofibrils with oleocanthal: In-silico approach." BIOINFOLET-A Quarterly Journal of Life Sciences 19.3 (2022): 288-295.
Oh, S., Brammer, K. S., Li, Y. J., Teng, D., Engler, A. J., Chien, S., & Jin, S. (2009). Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences, 106(7), 2130-2135.
Shen, X., Yu, Y., Ma, P., Luo, Z., Hu, Y., Li, M., ... & Cai, K. (2019). Titania nanotubes promote osteogenesis via mediating crosstalk between macrophages and MSCs under oxidative stress. Colloids and Surfaces B: Biointerfaces, 180, 39-48.
He, P., Zhang, H., Li, Y., Ren, M., Xiang, J., Zhang, Z., ... & Yang, S. (2020). 1α, 25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration. Materials Science and Engineering: C, 109, 110551.
47. Piszczek, P., Lewandowska, Ż., Radtke, A., Jędrzejewski, T., Kozak, W., Sadowska, B., ... & Fiori, F. (2017). Biocompatibility of titania nanotube coatings enriched with silver nanograins by chemical vapor deposition. Nanomaterials, 7(9), 274.
Mansoorianfar, M., Khataee, A., Riahi, Z., Shahin, K., Asadnia, M., Razmjou, A., ... & Li, D. (2020). Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications. Ultrasonics sonochemistry, 64, 104783.
Hasanzadeh Kafshgari, M., Kah, D., Mazare, A., Nguyen, N. T., Distaso, M., Peukert, W., ... & Fabry, B. (2019). Anodic titanium dioxide nanotubes for magnetically guided therapeutic delivery. Scientific Reports, 9(1), 13439.
Weingart, D., Steinemann, S., Schilli, W., Strub, J. R., Hellerich, U., Assenmacher, J., & Simpson, J. (1994). Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. International journal of oral and maxillofacial surgery, 23(6), 450-452.
- Schliephake, H., Reiss, G., Urban, R., Neukam, F. W., & Guckel, S. (1993). Metal release from titanium fixtures during placement in the mandible: an experimental study. International Journal of Oral & Maxillofacial Implants, 8(5).
Olmedo, D., Guglielmotti, M. B., & Cabrini, R. L. (2002). An experimental study of the dissemination of titanium and zirconium in the body. Journal of materials science: Materials in medicine, 13, 793-796.
-Guglielmotti, M. B., Domingo, M. G., Steimetz, T., Ramos, E., Paparella, M. L., & Olmedo, D. G. (2015). Migration of titanium dioxide microparticles and nanoparticles through the body and deposition in the gingiva: an experimental study in rats. European journal of oral sciences, 123(4), 242-248.
- Cionca, N., Müller, N., & Mombelli, A. (2015). Two‐piece zirconia implants supporting all‐ceramic crowns: a prospective clinical study. Clinical Oral Implants Research, 26(4), 413-418.
- Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental science & technology, 46(4), 2242-2250.
Filon, F. L., Mauro, M., Adami, G., Bovenzi, M., & Crosera, M. (2015). Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regulatory Toxicology and Pharmacology, 72(2), 310-322.-
- Lim, J., Tilton, R. D., Eggeman, A., & Majetich, S. A. (2007). Design and synthesis of plasmonic magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 311(1), 78-83.
- Huang, Y.F.; Sefah, K.; Bamrungsap, S.; Chang, H.T.; Tan, W. (2008) Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir , 24, 11860–11865. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.; Mallidi, S.; Zheng, X.; Rahmanzadeh, R.; Mir, Y.; Elrington, S.; Khurshid, A.; Hasan, T. (2010), Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62, 1094–1124. [Google Scholar] [CrossRef] [PubMed]
- Khlebtsov, B.; Panfilova, E.; Khanadeev, V.; Bibikova, O.; Terentyuk, G.; Ivanov, A.; Rumyantseva, V.; Shilov, I.; Ryabova, A.; Loshchenov, V.; et al. Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: Multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano 2011, 5, 7077–7089. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Newell, B.B.; Irudayaraj, J. Folic acid protected silver nanocarriers for targeted drug delivery. J. Biomed. Nanotechnol. 2012, 8, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, E.; Broggi, F.; Ponti, J.; Marmorato, P.( 2012); Franchini, F.; Lena, S.; Franchini, M.C. Lipophilic silver nanoparticles and their polymeric entrapment into targeted-PEG-based micelles for the treatment of glioblastoma. Adv. Healthc. Mater. , 1, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Menon, J.U.; Jadeja, P.; Tambe, P.; Vu, K.; Yuan, B.H.; Nguyen, K.T. (2013) Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics , 3, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.H.; Kim, J.H. A(2019) comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials , 9, 1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puri, A., Mohite, P., Maitra, S., Subramaniyan, V., Kumarasamy, V., Uti, D. E., ... & Atangwho, I. J. (2024). From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomedicine & Pharmacotherapy, 170, 116083.
- Nel, A. E. et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557
-. Bao, G., Mitragotri, S. & Tong, S. (2013).Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annu. Rev. Biomed. Eng. 15, 253–282
Doherty, G. J. & McMahon, H. T. (2009).Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902
-. Gao, H., Shi, W. & Freund, L. B. (2005).Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 102, 9469–9474
Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle
Tracking. Adv. Mater. 16, 961–966 (2004)
Yum, K., Na, S., Xiang, Y., Wang, N. & Yu, M. F. (2009). Mechanochemical Delivery and Dynamic Tracking of Fluorescent Quantum Dots in the Cytoplasm and Nucleus of Living Cells. Nano Lett. 9, 2193–2198
Khamees, Hamed H., et al. "In-Silico study of Destabilizing Alzheimer’s Aβ42 Protofibrils with Curcumin." International Journal of Medical Science and Dental Health 10.05 (2024): 76-84.
Li, Y., Zhang, X. & Cao, D. (2014). A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane. Soft Matter 10, 6844–6856
Wang, T., Bai, J., Jiang, X. & Nienhaus, G. U. (2012).Cellular uptake of nanoparticles by membrane penetration: a study combining
confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 6, 1251–1259
Stephens, D. J., & Pepperkok, R. (2001). The many ways to cross the plasma membrane. Proceedings of the National Academy of Sciences, 98(8), 4295-4298.
Wallace, E. J., & Sansom, M. S. (2008). Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano letters, 8(9), 2751-2756.
Chen, X., Kis, A., Zettl, A. & Bertozzi, C. R. (2007).A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. USA 104,
–8222
Leroueil, P. R. et al. (2008).Wide Varieties of Cationic Nanoparticles Induce Defects in Supported Lipid Bilayers. Nano Lett. 8, 420–424
-Pogodin, S., Werner, M., Sommer, J. U., & Baulin, V. A. (2012). Nanoparticle-induced permeability of lipid membranes. Acs Nano, 6(12), 10555-10561.
Altuwirqi, R. M., Baatiyah, B., Nugali, E., Hashim, Z., & Al-Jawhari, H. (2020). Synthesis and characterization of aluminum nanoparticles prepared in vinegar using a pulsed laser ablation technique. Journal of Nanomaterials, 2020..