References
Oliveira LL, Bergmann A, Melo AC, Thuler LC. Prognostic factors associated with overall survival in patients with oral cavity squamous cell carcinoma. Med Oral Patol Oral Cir Bucal. 2020;25(4):e523–e531. doi:10.4317/medoral.23558.
Dong L, Xue L, Cheng W, Tang J, Ran J, Li Y. Comprehensive survival analysis of oral squamous cell carcinoma patients undergoing initial radical surgery. BMC Oral Health. 2024;24(1):919. doi:10.1186/s12903-024-04690-z.
Zhao Y, Chen D, Yin J, Xie J, Sun CY, Lu M. Comprehensive Analysis of Tumor Immune Microenvironment Characteristics for the Prognostic Prediction and Immunotherapy of Oral Squamous Cell Carcinoma. Front Genet. 2022;13:788580. doi:10.3389/fgene.2022.788580.
Wong CC, Cheng KW, Rigas B. Preclinical predictors of anticancer drug efficacy: critical assessment with emphasis on whether nanomolar potency should be required of candidate agents. J Pharmacol Exp Ther. 2012;341(3):572–578. doi:10.1124/jpet.112.191957.
Martin CL, Reshmi SC, Ried T, Gottberg W, Wilson JW, Reddy JK, et al. Chromosomal imbalances in oral squamous cell carcinoma: examination of 31 cell lines and review of the literature. Oral Oncol. 2008;44(4):369–382. doi:10.1016/j.oraloncology.2007.05.003.
Fadlullah MZ, Chiang IK, Dionne KR, Yee PS, Gan CP, Sam KK, et al. Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies. Oncotarget. 2016;7(19):27802–27818. doi:10.18632/oncotarget.8533.
Dongoran RA, Wang KH, Lin TJ, Yuan TC, Liu CH. Anti-Proliferative Effect of Statins Is Mediated by DNMT1 Inhibition and p21 Expression in OSCC Cells. Cancers (Basel). 2020;12(8):2084. doi:10.3390/cancers12082084.
Jagadeesan D, Sathasivam KV, Fuloria NK, Balakrishnan V, Khor GH, Ravichandran M, et al. Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances. Pathol Res Pract. 2024;261:155489. doi:10.1016/j.prp.2024.155489.
Yang Z, Sun P, Dahlstrom KR, Gross N, Li G. Joint effect of human papillomavirus exposure, smoking and alcohol on risk of oral squamous cell carcinoma. BMC Cancer. 2023;23(1):457. doi:10.1186/s12885-023-10948-6.
Ghantous Y, Abu Elnaaj I. [Early diagnosis of oral cancer - the role of the dentist]. Harefuah. 2017;156(10):645–649. Hebrew.
Lee CH, Ko AM, Warnakulasuriya S, Ling TY, Sunarjo, Rajapakse PS, et al. Population burden of betel quid abuse and its relation to oral premalignant disorders in South, Southeast, and East Asia: an Asian Betel-quid Consortium Study. Am J Public Health. 2012;102(3):e17–e24. doi:10.2105/AJPH.2011.300521.
Ferreira AK, Carvalho SH, Granville-Garcia AF, Sarmento DJ, Agripino GG, Abreu MH, et al. Survival and prognostic factors in patients with oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal. 2021;26(3):e387–e392. doi:10.4317/medoral.24242.
P J N, Patil SR, Veeraraghavan VP, Daniel S, Aileni KR, Karobari MI. Oral cancer stem cells: A comprehensive review of key drivers of treatment resistance and tumor recurrence. Eur J Pharmacol. 2025;989:177222. doi:10.1016/j.ejphar.2024.177222.
Sadeghzade A, Jafarian A, Davodpour AH, Pouresmaeliyan Roumani M, Mohammadikhah M, Qutaiba Badraldeen S, et al. Oral squamous cell carcinoma pharmacological treatment; A long non-coding RNAs (long ncRNAs) story. Int J Mol Cell Med. 2025;14(2):736–752. doi:10.22088/IJMCM.BUMS.14.2.736.
Dhandapani M, Goldman A. Preclinical Cancer Models and Biomarkers for Drug Development: New Technologies and Emerging Tools. J Mol Biomark Diagn. 2017;8(5):356. doi:10.4172/2155-9929.1000356.
Fadlullah MZ, Chiang IK, Dionne KR, Yee PS, Gan CP, Sam KK, et al. Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies. Oncotarget. 2016;7(19):27802–27818. doi:10.18632/oncotarget.8533.
Fribley AM, Cruz PG, Miller JR, Callaghan MU, Cai P, Narula N, et al. Complementary cell-based high-throughput screens identify novel modulators of the unfolded protein response. J Biomol Screen. 2011;16(8):825–835. doi:10.1177/1087057111414893.
Huni KC, Cheung J, Sullivan M, Robison WT, Howard KM, Kingsley K. Chemotherapeutic Drug Resistance Associated with Differential miRNA Expression of miR-375 and miR-27 among Oral Cancer Cell Lines. Int J Mol Sci. 2023;24(2):1244. doi:10.3390/ijms24021244.
Coon J, Kingsley K. Assessment of MicroRNA (miR)-365 Effects on Oral Squamous Carcinoma Cell Line Phenotypes. Biomolecules. 2021;11(6):874. doi:10.3390/biom11060874.
Huni KC, Cheung J, Sullivan M, Robison WT, Howard KM, Kingsley K. Chemotherapeutic Drug Resistance Associated with Differential miRNA Expression of miR-375 and miR-27 among Oral Cancer Cell Lines. Int J Mol Sci. 2023;24(2):1244. doi:10.3390/ijms24021244.
Lapke N, Lu YJ, Liao CT, Lee LY, Lin CY, Wang HM, et al. Missense mutations in the TP53 DNA-binding domain predict outcomes in patients with advanced oral cavity squamous cell carcinoma. Oncotarget. 2016;7(28):44194–44210. doi:10.18632/oncotarget.9925.
Ishwad CS, Ferrell RE, Rossie KN, Appel BN, Johnson JT, Myers EN, et al. Loss of heterozygosity of the short arm of chromosomes 3 and 9 in oral cancer. Int J Cancer. 1996;69(1):1–4. doi:10.1002/(SICI)1097-0215(19960220)69:1<1::AID-IJC1>3.0.CO;2-8.
Pomella S, Melaiu O, Dri M, Martelli M, Gargari M, Barillari G. Effects of Angiogenic Factors on the Epithelial-to-Mesenchymal Transition and Their Impact on the Onset and Progression of Oral Squamous Cell Carcinoma: An Overview. Cells. 2024;13(15):1294. doi:10.3390/cells13151294.
Wu CL, Roz L, McKown S, Sloan P, Read AP, Holland S, et al. DNA studies underestimate the major role of CDKN2A inactivation in oral and oropharyngeal squamous cell carcinomas. Genes Chromosomes Cancer. 1999;25(1):16–25.
Huang SF, Chien HT, Cheng SD, Chuang WY, Liao CT, Wang HM. EGFR copy number alterations in primary tumors, metastatic lymph nodes, and recurrent and multiple primary tumors in oral cavity squamous cell carcinoma. BMC Cancer. 2017;17(1):592. doi:10.1186/s12885-017-3586-9.
Pomella S, Melaiu O, Dri M, Martelli M, Gargari M, Barillari G. Effects of Angiogenic Factors on the Epithelial-to-Mesenchymal Transition and Their Impact on the Onset and Progression of Oral Squamous Cell Carcinoma: An Overview. Cells. 2024;13(15):1294. doi:10.3390/cells13151294.
Mirabelli P, Coppola L, Salvatore M. Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancers (Basel). 2019;11(8):1098. doi:10.3390/cancers11081098.
Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and development. Cancer Res. 2014;74(9):2377–2384. doi:10.1158/0008-5472.CAN-13-2971.
Michaelis M, Wass MN, Cinatl J. Drug-adapted cancer cell lines as preclinical models of acquired resistance. Cancer Drug Resist. 2019;2(3):447–456. doi:10.20517/cdr.2019.005.
Piwocka O, Musielak M, Ampuła K, Piotrowski I, Adamczyk B, Fundowicz M, et al. Navigating challenges: optimising methods for primary cell culture isolation. Cancer Cell Int. 2024;24(1):28. doi:10.1186/s12935-023-03190-4.
Gioanni J, Fischel JL, Lambert JC, Demard F, Mazeau C, Zanghellini E, et al. Two new human tumor cell lines derived from squamous cell carcinomas of the tongue: establishment, characterization and response to cytotoxic treatment. Eur J Cancer Clin Oncol. 1988;24(9):1445–1455. doi:10.1016/0277-5379(88)90335-5.
Momose F, Araida T, Negishi A, Ichijo H, Shioda S, Sasaki S. Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas. J Oral Pathol Med. 1989;18(7):391–395. doi:10.1111/j.1600-0714.1989.tb01570.x.
Wang X, Sun C, He S, Guo X, Xu H, Zeng X, et al. Apoptotic effects of diosgeninlactoside on oral squamous carcinoma cells in vitro and in vivo. Biol Pharm Bull. 2014;37(9):1450–1459. doi:10.1248/bpb.b14-00122.
Souren NY, Fusenig NE, Heck S, Dirks WG, Capes-Davis A, Bianchini F, et al. Cell line authentication: a necessity for reproducible biomedical research. EMBO J. 2022;41(14):e111307. doi:10.15252/embj.2022111307.
Yousafzai MS, Hammer JA. Using Biosensors to Study Organoids, Spheroids and Organs-on-a-Chip: A Mechanobiology Perspective. Biosensors (Basel). 2023;13(10):905. doi:10.3390/bios13100905.
Geyer M, Geyer F, Reuning U, Klapproth S, Wolff KD, Nieberler M. CRISPR/Cas9-mediated knock out of ITGB6 in human OSCC cells reduced migration and proliferation ability. Head Face Med. 2024;20(1):37. doi:10.1186/s13005-024-00437-x.
Zhang L, He M, Zhang Y, Nilubol N, Shen M, Kebebew E. Quantitative high-throughput drug screening identifies novel classes of drugs with anticancer activity in thyroid cancer cells: opportunities for repurposing. J Clin Endocrinol Metab. 2012;97(3):E319–E328. doi:10.1210/jc.2011-2671.
Kim SY, Han YK, Song JM, Lee CH, Kang K, Yi JM, et al. Aberrantly hypermethylated tumor suppressor genes were identified in oral squamous cell carcinoma (OSCC). Clin Epigenetics. 2019;11(1):116. doi:10.1186/s13148-019-0715-0.
Wang W, Li H, Qiu Y, Li K, Lu Y, Deng Q, et al. Maternally expressed 3 inhibits the biological activity of oral squamous cell carcinoma SCC25 and CAL27 cell lines. Oncol Lett. 2021;22(5):784. doi:10.3892/ol.2021.13045.
Souza AG, Silva IBB, Campos-Fernandez E, Barcelos LS, Souza JB, Marangoni K, et al. Comparative Assay of 2D and 3D Cell Culture Models: Proliferation, Gene Expression and Anticancer Drug Response. Curr Pharm Des. 2018;24(15):1689–1694. doi:10.2174/1381612824666180404152304.
Gawas NP, Navarange SS, Chovatiya GL, Chaturvedi P, Waghmare SK. Establishment and characterization of novel human oral squamous cell carcinoma cell lines from advanced stage tumors of buccal mucosa. Oncol Rep. 2019;41(4):2289–2298. doi:10.3892/or.2019.7003.
Brenner JC, Graham MP, Kumar B, Saunders LM, Kupfer R, Lyons RH, et al. Genotyping of 73 UM-SCC head and neck squamous cell carcinoma cell lines. Head Neck. 2010;32(4):417–426. doi:10.1002/hed.21198.
Yang JS, Lin CW, Hsieh YH, Chien MH, Chuang CY, Yang SF. Overexpression of carbonic anhydrase IX induces cell motility by activating matrix metalloproteinase-9 in human oral squamous cell carcinoma cells. Oncotarget. 2017;8(47):83088–83099. doi:10.18632/oncotarget.20236.
Hamoui MZ, Rizvi S, Arnouk H, Roberts CM. Putative Biomarkers for Prognosis, Epithelial-to-Mesenchymal Transition, and Drug Response in Cell Lines Representing Oral Squamous Cell Carcinoma Progression. Genes (Basel). 2025;16(2):209. doi:10.3390/genes16020209.
Gosepath EM, Eckstein N, Hamacher A, Servan K, von Jonquieres G, Lage H, et al. Acquired cisplatin resistance in the head-neck cancer cell line Cal27 is associated with decreased DKK1 expression and can partially be reversed by overexpression of DKK1. Int J Cancer. 2008;123(9):2013–2019. doi:10.1002/ijc.23721.
Ribeiro IP, Rodrigues JM, Mascarenhas A, Kosyakova N, Caramelo F, Liehr T, et al. Cytogenetic, genomic, and epigenetic characterization of the HSC-3 tongue cell line with lymph node metastasis. J Oral Sci. 2018;60(1):70–81. doi:10.2334/josnusd.16-0811.
Arrasate A, Bravo I, Lopez-Robles C, Arbelaiz-Sarasola A, Ugalde M, Meijueiro ML, et al. Establishment and Characterization of a Stable Producer Cell Line Generation Platform for the Manufacturing of Clinical-Grade Lentiviral Vectors. Biomedicines. 2024;12(10):2265. doi:10.3390/biomedicines12102265.
Al-Kabani A, Huda B, Haddad J, Yousuf M, Bhurka F, Ajaz F, et al. Exploring Experimental Models of Colorectal Cancer: A Critical Appraisal from 2D Cell Systems to Organoids, Humanized Mouse Avatars, Organ-on-Chip, CRISPR Engineering, and AI-Driven Platforms-Challenges and Opportunities for Translational Precision Oncology. Cancers (Basel). 2025;17(13):2163. doi:10.3390/cancers17132163.
Ansori AN, Antonius Y, Susilo RJ, Hayaza S, Kharisma VD, Parikesit AA, et al. Application of CRISPR-Cas9 genome editing technology in various fields: A review. Narra J. 2023;3(2):e184. doi:10.52225/narra.v3i2.184.
Fox JT, Myung K. Cell-based high-throughput screens for the discovery of chemotherapeutic agents. Oncotarget. 2012;3(5):581–585. doi:10.18632/oncotarget.513.
Shebbo S, Alateyah N, Yassin E, Mahmoud DES, Tamimi F, Anweigi L, et al. Unravelling molecular mechanism of oral squamous cell carcinoma and genetic landscape: an insight into disease complexity, available therapies, and future considerations. Front Immunol. 2025;16:1626243. doi:10.3389/fimmu.2025.1626243.
Jiang L, Ji N, Zhou Y, Li J, Liu X, Wang Z, et al. CAL 27 is an oral adenosquamous carcinoma cell line. Oral Oncol. 2009;45(11):e204–e207. doi:10.1016/j.oraloncology.2009.06.001.
Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14(4):910–919. doi:10.5114/aoms.2016.63743.
Torsvik A, Stieber D, Enger PØ, Golebiewska A, Molven A, Svendsen A, et al. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med. 2014;3(4):812–824. doi:10.1002/cam4.219.
Salk JJ, Fox EJ, Loeb LA. Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Pathol. 2010;5:51–75. doi:10.1146/annurev-pathol-121808-102113.
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8(1):70. doi:10.1038/s41392-023-01332-8.
Jiang L, Ji N, Zhou Y, Li J, Liu X, Wang Z, et al. CAL 27 is an oral adenosquamous carcinoma cell line. Oral Oncol. 2009;45(11):e204–e207. doi:10.1016/j.oraloncology.2009.06.001.
Hu Q, Zhu Y, Mei J, Liu Y, Zhou G. Extracellular matrix dynamics in tumor immunoregulation: from tumor microenvironment to immunotherapy. J Hematol Oncol. 2025;18(1):65. doi:10.1186/s13045-025-01717-y.
Harada K, Ferdous T, Ueyama Y. Establishment of 5-fluorouracil-resistant oral squamous cell carcinoma cell lines with epithelial to mesenchymal transition changes. Int J Oncol. 2014;44(4):1302–1308. doi:10.3892/ijo.2014.2270.
Liu T, Chen G, Sun D, Lei M, Li Y, Zhou C, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai). 2017;49(9):808–816. doi:10.1093/abbs/gmx078.
Choi HS, Kim YK, Yun PY. Upregulation of MDR- and EMT-Related Molecules in Cisplatin-Resistant Human Oral Squamous Cell Carcinoma Cell Lines. Int J Mol Sci. 2019;20(12):3034. doi:10.3390/ijms20123034.
Avinash Tejasvi ML, Maragathavalli G, Putcha UK, Ramakrishna M, Vijayaraghavan R, Anulekha Avinash CK. Impact of ERCC1 gene polymorphisms on response to cisplatin based therapy in oral squamous cell carcinoma (OSCC) patients. Indian J Pathol Microbiol. 2020;63(4):538–543. doi:10.4103/IJPM.IJPM_964_19.
Li L, Liu HC, Wang C, Liu X, Hu FC, Xie N, et al. Overexpression of β-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. Biomed Res Int. 2016;2016:5378567. doi:10.1155/2016/5378567.
Brands RC, De Donno F, Knierim ML, Steinacker V, Hartmann S, Seher A, et al. Multi-kinase inhibitors and cisplatin for head and neck cancer treatment in vitro. Oncol Lett. 2019;18(3):2220–2231. doi:10.3892/ol.2019.10541.
Jameson MJ, Beckler AD, Taniguchi LE, Allak A, Vanwagner LB, Lee NG, et al. Activation of the insulin-like growth factor-1 receptor induces resistance to epidermal growth factor receptor antagonism in head and neck squamous carcinoma cells. Mol Cancer Ther. 2011;10(11):2124–2134. doi:10.1158/1535-7163.MCT-11-0294.
Kulsum S, Sudheendra HV, Pandian R, Ravindra DR, Siddappa G, R N, et al. Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition. Mol Carcinog. 2017;56(2):694–711. doi:10.1002/mc.22526.
Kunze D, Erdmann K, Froehner M, Wirth MP, Fuessel S. Enhanced inhibition of bladder cancer cell growth by simultaneous knockdown of antiapoptotic Bcl-xL and survivin in combination with chemotherapy. Int J Mol Sci. 2013;14(6):12297–12312. doi:10.3390/ijms140612297.
Khalil A, Jameson MJ. The EGFR Inhibitor Gefitinib Enhanced the Response of Human Oral Squamous Cell Carcinoma to Cisplatin In Vitro. Drugs R D. 2017;17(4):545–555. doi:10.1007/s40268-017-0204-x.
Choi HS, Kim YK, Yun PY. Cisplatin Plus Cetuximab Inhibits Cisplatin-Resistant Human Oral Squamous Cell Carcinoma Cell Migration and Proliferation but Does Not Enhance Apoptosis. Int J Mol Sci. 2021;22(15):8167. doi:10.3390/ijms22158167.
Harada K, Ferdous T, Harada T, Ueyama Y. Metformin in combination with 5-fluorouracil suppresses tumor growth by inhibiting the Warburg effect in human oral squamous cell carcinoma. Int J Oncol. 2016;49(1):276–284. doi:10.3892/ijo.2016.3523.
Srivastava NS, Srivastava RAK. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine. 2019;52:117–128. doi:10.1016/j.phymed.2018.09.224.
Kujan O, van Schaijik B, Farah CS. Immune Checkpoint Inhibitors in Oral Cavity Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: A Systematic Review. Cancers (Basel). 2020;12(7):1937. doi:10.3390/cancers12071937.
Falcon BL, Barr S, Gokhale PC, Chou J, Fogarty J, Depeille P, et al. Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors. Cancer Res. 2011;71(5):1573–1583. doi:10.1158/0008-5472.CAN-10-3126.
Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207–218. doi:10.1089/adt.2014.573.
Henke E, Nandigama R, Ergün S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front Mol Biosci. 2020;6:160. doi:10.3389/fmolb.2019.00160.
Obeagu EI. Oxygen gradients in tumor tissues implications for breast cancer metastasis - a narrative review. Ann Med Surg (2012). 2025;87(6):3372–3380. doi:10.1097/MS9.0000000000003121.
Laurent J, Frongia C, Cazales M, Mondesert O, Ducommun B, Lobjois V. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer. 2013;13:73. doi:10.1186/1471-2407-13-73.
Kadletz L, Heiduschka G, Domayer J, Schmid R, Enzenhofer E, Thurnher D. Evaluation of spheroid head and neck squamous cell carcinoma cell models in comparison to monolayer cultures. Oncol Lett. 2015;10(3):1281–1286. doi:10.3892/ol.2015.3487.
Yang C, Deng X, Tang Y, Tang H, Xia C. Natural products reverse cisplatin resistance in the hypoxic tumor microenvironment. Cancer Lett. 2024;598:217116. doi:10.1016/j.canlet.2024.217116.
Lee HJ, Mun S, Pham DM, Kim P. Extracellular Matrix-Based Hydrogels to Tailoring Tumor Organoids. ACS Biomater Sci Eng. 2021;7(9):4128–4135. doi:10.1021/acsbiomaterials.0c01801.
Driehuis E, Kolders S, Spelier S, Lõhmussaar K, Willems SM, Devriese LA, et al. Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy. Cancer Discov. 2019;9(7):852–871.
Li YY, Zhou CX, Gao Y. Interaction between oral squamous cell carcinoma cells and fibroblasts through TGF-β1 mediated by podoplanin. Exp Cell Res. 2018;369(1):43–53. doi:10.1016/j.yexcr.2018.04.029.
Haga K, Yamazaki M, Maruyama S, Kawaharada M, Suzuki A, Hoshikawa E, et al. Crosstalk between oral squamous cell carcinoma cells and cancer-associated fibroblasts via the TGF-β/SOX9 axis in cancer progression. Transl Oncol. 2021;14(12):101236. doi:10.1016/j.tranon.2021.101236.
Cai J, Qiao B, Gao N, Lin N, He W. Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am J Physiol Cell Physiol. 2019;316(5):C731–C740. doi:10.1152/ajpcell.00366.2018.
Mulligan JK, Day TA, Gillespie MB, Rosenzweig SA, Young MR. Secretion of vascular endothelial growth factor by oral squamous cell carcinoma cells skews endothelial cells to suppress T-cell functions. Hum Immunol. 2009;70(6):375–382. doi:10.1016/j.humimm.2009.01.014.
Haga K, Yamazaki M, Maruyama S, Kawaharada M, Suzuki A, Hoshikawa E, et al. Crosstalk between oral squamous cell carcinoma cells and cancer-associated fibroblasts via the TGF-β/SOX9 axis in cancer progression. Transl Oncol. 2021;14(12):101236. doi:10.1016/j.tranon.2021.101236.
Regmi S, Poudel C, Adhikari R, Luo KQ. Applications of Microfluidics and Organ-on-a-Chip in Cancer Research. Biosensors (Basel). 2022;12(7):459. doi:10.3390/bios12070459.
Nam H, Funamoto K, Jeon JS. Cancer cell migration and cancer drug screening in oxygen tension gradient chip. Biomicrofluidics. 2020;14(4):044107. doi:10.1063/5.0011216.
Sun Q, Tan SH, Chen Q, Ran R, Hui Y, Chen D, et al. Microfluidic Formation of Coculture Tumor Spheroids with Stromal Cells As a Novel 3D Tumor Model for Drug Testing. ACS Biomater Sci Eng. 2018;4(12):4425–4433. doi:10.1021/acsbiomaterials.8b00904.
Li X, Fan X, Li Z, Shi L, Liu J, Luo H, et al. Application of Microfluidics in Drug Development from Traditional Medicine. Biosensors (Basel). 2022;12(10):870. doi:10.3390/bios12100870.
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel). 2023;15(17):4266. doi:10.3390/cancers15174266.
Fu J, Feng Y, Sun Y, Yi R, Tian J, Zhao W, et al. A Multi-Drug Concentration Gradient Mixing Chip: A Novel Platform for High-Throughput Drug Combination Screening. Biosensors (Basel). 2024;14(5):212. doi:10.3390/bios14050212.
Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther. 2023;8(1):160. doi:10.1038/s41392-023-01419-2.
Gawas NP, Navarange SS, Chovatiya GL, Chaturvedi P, Waghmare SK. Establishment and characterization of novel human oral squamous cell carcinoma cell lines from advanced stage tumors of buccal mucosa. Oncol Rep. 2019;41(4):2289–2298. doi:10.3892/or.2019.7003.
Zhao Y, Li S, Zhu L, Huang M, Xie Y, Song X, et al. Personalized drug screening using patient-derived organoid and its clinical relevance in gastric cancer. Cell Rep Med. 2024;5(7):101627. doi:10.1016/j.xcrm.2024.101627.
Zhou Y, Tao L, Qiu J, et al. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther. 2024;9:132. doi:10.1038/s41392-024-01942-w.
Liao J, Yang Z, Azarbarzin S, Cullen KJ, Dan H. Differential modulation of PI3K/Akt/mTOR activity by EGFR inhibitors: A rationale for co-targeting EGFR and PI3K in cisplatin-resistant HNSCC. Head Neck. 2024;46(5):1126–1135. doi:10.1002/hed.27718.
Qi H, Tan X, Zhang W, Zhou Y, Chen S, Zha D, et al. The applications and techniques of organoids in head and neck cancer therapy. Front Oncol. 2023;13:1191614. doi:10.3389/fonc.2023.1191614.