References
Alowais, Shuroug A., Alghamdi, Sahar S.., Alsuhebany, Nada., Alqahtani, Tariq., Alshaya, Abdulrahman I.., Almohareb, Sumaya N., Aldairem, Atheer., Alrashed, Mohammed A., Saleh, Khalid bin., Badreldin, H.., Yami, Majed S Al., Harbi, Shmeylan A. Al., & Albekairy, Abdulkareem M.. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education , 23 . http://doi.org/10.1186/s12909-023-04698-z
Attaran, M.. (2021). The impact of 5G on the evolution of intelligent automation and industry digitization. Journal of Ambient Intelligence and Humanized Computing , 14 , 5977 - 5993 . http://doi.org/10.1007/s12652-020-02521-x
Baxi, V.., Edwards, R.., Montalto, M.., & Saha, Saurabh. (2021). Digital pathology and artificial intelligence in translational medicine and clinical practice. Modern Pathology , 35 , 23 - 32 . http://doi.org/10.1038/s41379-021-00919-2
Bhinder, B.., Gilvary, Coryandar., Madhukar, Neel S.., & Elemento, O.. (2021). Artificial Intelligence in Cancer Research and Precision Medicine.. Cancer discovery , 11 4 , 900-915 . http://doi.org/10.1158/2159-8290.CD-21-0090
Bibault, J. E., Chaix, B., Nectoux, P., Pienkowski, A., Guillemasé, A., & Brouard, B. (2019). Healthcare ex machina: Are conversational agents ready for prime time in oncology? Clinical and Translational Radiation Oncology, 16, 55–59. https://doi.org/10.1016/j.ctro.2019.02.002
Cao, Yihan., Li, Siyu., Liu, Yixin., Yan, Zhiling., Dai, Yutong., Yu, Philip S.., & Sun, Lichao. (2023). A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT. ArXiv , abs/2303.04226 . http://doi.org/10.48550/arXiv.2303.04226
Castiglioni, I.., Rundo, L.., Codari, M.., Leo, G. Di., Salvatore, C.., Interlenghi, M.., Gallivanone, F.., Cozzi, A.., D'Amico, N.., & Sardanelli, F.. (2021). AI applications to medical images: From machine learning to deep learning.. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics , 83 , 9-24 . http://doi.org/10.1016/j.ejmp.2021.02.006
Chang, H.., Jung, C.., Woo, Junwoo., Lee, Sanghun., Cho, Joonyoung., Kim, Sun Woo., & Kwak, Tae-Yeong. (2018). Artificial Intelligence in Pathology. Journal of Pathology and Translational Medicine , 53 , 1 - 12 . http://doi.org/10.4132/jptm.2018.12.16
Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyo, D., ... & Tsirigos, A. (2018). Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559–1567. https://doi.org/10.1038/s41591-018-0177-5
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z
Haenlein, M.., & Kaplan, A.. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review , 61 , 14 - 5 . http://doi.org/10.1177/0008125619864925
Helm, J.., Swiergosz, A.., Haeberle, Heather S.., Karnuta, J.., Schaffer, J.., Krebs, V.., Spitzer, A.., & Ramkumar, P.. (2020). Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Current Reviews in Musculoskeletal Medicine , 13 , 69-76 . http://doi.org/10.1007/s12178-020-09600-8
Hübner, M.., Blanc, C.., Roulin, D.., Winiker, M.., Gander, Sylvain., & Demartines, N.. (2015). Randomized clinical trial on epidural versus patient-controlled analgesia for laparoscopic colorectal surgery within an enhanced recovery pathway.. Annals of surgery , 261 4 , 648-53 . http://doi.org/10.1097/SLA.0000000000000838
Jiang, Yuchen., Li, Xiang., Luo, Hao., Yin, Shen., & Kaynak, O.. (2022). Quo vadis artificial intelligence?. Discover Artificial Intelligence , 2 . http://doi.org/10.1007/s44163-022-00022-8
Kassahun, Y.., Yu, Bingbin., Tibebu, A. T.., Stoyanov, D.., Giannarou, S.., Metzen, J. H.., & Poorten, E. V.. (2016). Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. International Journal of Computer Assisted Radiology and Surgery , 11 , 553-568 . http://doi.org/10.1007/s11548-015-1305-z
Kaul, V.., Enslin, Sarah., & Gross, S.. (2020). The history of artificial intelligence in medicine.. Gastrointestinal endoscopy . http://doi.org/10.1016/j.gie.2020.06.040
King, Michael R.., & chatGPT, . (2023). A Conversation on Artificial Intelligence, Chatbots, and Plagiarism in Higher Education. Cellular and Molecular Bioengineering , 16 , 1-2 . http://doi.org/10.1007/s12195-022-00754-8
Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17. https://doi.org/10.1016/j.csbj.2014.11.005
Liu, V.., Rosas, Efren., Hwang, J.., Cain, E.., Foss-Durant, Anne M.., Clopp, Molly P., Huang, Mengfei., Lee, Derrick C., Mustille, Alex., Kipnis, P.., & Parodi, S.. (2017). Enhanced Recovery After Surgery Program Implementation in 2 Surgical Populations in an Integrated Health Care Delivery System. JAMA Surgery , 152 , e171032– . http://doi.org/10.1001/jamasurg.2017.1032
Lund, Brady D.., Wang, Ting., Mannuru, Nishith Reddy., Nie, Bing., Shimray, S.., & Wang, Ziang. (2023). ChatGPT and a new academic reality: Artificial Intelligence‐written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology , 74 , 570 - 581 . http://doi.org/10.1002/asi.24750
McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Suleyman, M. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6
Mehrabi, Ninareh., Morstatter, Fred., Saxena, N.., Lerman, Kristina., & Galstyan, A.. (2019). A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys (CSUR) , 54 , 1 - 35 . http://doi.org/10.1145/3457607
Nassif, H., Badran, H., & Hassan, R. (2022). Artificial intelligence in radiation oncology: Opportunities, challenges, and implications for clinical practice. Frontiers in Oncology, 12, 832620. https://doi.org/10.3389/fonc.2022.832620
Ripollés-Melchor, J.., Ramírez-Rodríguez, J.., Casans-Francés, R.., Aldecoa, C.., Abad-Motos, A.., Logroño-Egea, Margarita., García-Erce, J.., Camps-Cervantes, Ángels., Ferrando-Ortolá, C.., Rica, Alejandro Suarez de la., Cuéllar-Martínez, A.., Marmaña-Mezquita, Sandra., Abad-Gurumeta, A.., & Calvo-Vecino, J. M.. (2019). Association Between Use of Enhanced Recovery After Surgery Protocol and Postoperative Complications in Colorectal Surgery: The Postoperative Outcomes Within Enhanced Recovery After Surgery Protocol (POWER) Study.. JAMA surgery . http://doi.org/10.1001/jamasurg.2019.0995
Roh, Yuji., Heo, Geon., & Whang, Steven Euijong. (2018). A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective. IEEE Transactions on Knowledge and Data Engineering , 33 , 1328-1347 . http://doi.org/10.1109/TKDE.2019.2946162
Rumsfeld, J.., Joynt, Karen E.., & Maddox, T.. (2016). Big data analytics to improve cardiovascular care: promise and challenges. Nature Reviews Cardiology , 13 , 350-359 . http://doi.org/10.1038/nrcardio.2016.42
Sarker, Iqbal H.. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. Sn Computer Science , 2 . http://doi.org/10.1007/s42979-021-00592-x
Sarker, Iqbal H.., Khan, Asif Irshad., Abushark, Yoosef B.., & Alsolami, F.. (2022). Internet of Things (IoT) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions and Research Directions. Mobile Networks and Applications , 28 , 296-312 . http://doi.org/10.1007/s11036-022-01937-3
Schwendicke, F.., Samek, W.., & Krois, J.. (2020). Artificial Intelligence in Dentistry: Chances and Challenges. Journal of Dental Research , 99 , 769 - 774 . http://doi.org/10.1177/0022034520915714
Shih, Benjamin., Shah, Dylan S.., Li, Jinxing., Thuruthel, T. G.., Park, Yong‐Lae., Iida, F.., Bao, Zhenan., Kramer‐Bottiglio, Rebecca., & Tolley, M.. (2020). Electronic skins and machine learning for intelligent soft robots. Science Robotics , 5 . http://doi.org/10.1126/scirobotics.aaz9239
Taecharungroj, Viriya. (2023). "What Can ChatGPT Do?" Analyzing Early Reactions to the Innovative AI Chatbot on Twitter. Big Data Cogn. Comput. , 7 , 35 . http://doi.org/10.3390/bdcc7010035
Tu, Tao., Azizi, Shekoofeh., Driess, Danny., Schaekermann, M.., Amin, Mohamed., Chang, Pi-Chuan., Carroll, Andrew., Lau, Charles., Tanno, Ryutaro., Ktena, Ira., Mustafa, B.., Chowdhery, Aakanksha., Liu, Yun., Kornblith, Simon., Fleet, David J.., Mansfield, P. A.., Prakash, Sushant., Wong, Renee C., Virmani, S.., Semturs, Christopher., Mahdavi, S. S.., Green, Bradley., Dominowska, Ewa., Arcas, B. A. Y.., Barral, J.., Webster, D.., Corrado, G.., Matias, Yossi., Singhal, K.., Florence, Peter R.., Karthikesalingam, A.., & Natarajan, Vivek. (2023). Towards Generalist Biomedical AI. ArXiv , abs/2307.14334 . http://doi.org/10.48550/arXiv.2307.14334
Wang, Chunhao., Zhu, Xiaofeng., Hong, Julian C.., & Zheng, D.. (2019). Artificial Intelligence in Radiotherapy Treatment Planning: Present and Future. Technology in Cancer Research & Treatment , 18 . http://doi.org/10.1177/1533033819873922
Wu, Tianyu., He, Shizhu., Liu, Jingping., Sun, Siqi., Liu, Kang., Han, Qing‐Long., & Tang, Yang. (2023). A Brief Overview of ChatGPT: The History, Status Quo and Potential Future Development. IEEE/CAA Journal of Automatica Sinica , 10 , 1122-1136 . http://doi.org/10.1109/JAS.2023.123618
Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladinskaya, A. V., ... & Aspuru-Guzik, A. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038–1040. https://doi.org/10.1038/s41587-019-0224-x
Zhou, S. K.., Greenspan, H.., Davatzikos, C.., Duncan, J.., Ginneken, B.., Madabhushi, A.., Prince, Jerry L., Rueckert, D.., & Summers, R.. (2020). A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises. Proceedings of the IEEE , 109 , 820-838 . http://doi.org/10.1109/JPROC.2021.3054390