References
Abana, D., Gyamfi, E., Dogbe, M., et al. (2019). Investigating the virulence genes and antibiotic susceptibility patterns of Vibrio cholerae O1 in environmental and clinical isolates in Accra, Ghana. BMC Infectious Diseases, 19, 76. https://doi.org/10.1186/s12879-019-3714-z
Bhandari, M., Jennison, A. V., Rathnayake, I. U., & Huygens, F. (2021). Evolution, distribution and genetics of atypical Vibrio cholerae—A review. Infection, Genetics and Evolution, 89, 104726. https://doi.org/10.1016/j.meegid.2021.104726
Canals, A., Pieretti, S., Muriel-Masanes, M., et al. (2023). ToxR activates the Vibrio cholerae virulence genes by tethering DNA to the membrane through versatile binding to multiple sites. Proceedings of the National Academy of Sciences U.S.A., 120(29), e2304378120. https://doi.org/10.1073/pnas.2304378120
Chaguza, C., Ouso, D. O., Kabwama, S. N., Malama, K., Ng'oma, M., Musonda, K. G., Misinzo, G., & Thomson, N. R. (2024). Genomic insights into the 2022–2023 Vibrio cholerae outbreak in Malawi. Nature Communications, 15(1), 45860. https://doi.org/10.1038/s41467-024-45860-6
Chin, C. S., Gutiérrez, R. A., Sorenson, J., DeLong, K., Tullman-Ercek, D., Korlach, J., & Waldor, M. K. (2020). Complete genome-wide reconstruction of mobile genetic elements reveals their contribution to Vibrio cholerae evolution and virulence. Proceedings of the National Academy of Sciences, 117(45), 28152–28162. https://doi.org/10.1073/pnas.2019637117
Crisan, C. V., Chande, A. T., Williams, K., et al. (2019). Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters. Genome Biology, 20, 163. https://doi.org/10.1186/s13059-019-1765-5
De, R. (2021). Mobile genetic elements of Vibrio cholerae and the evolution of epidemic traits. Frontiers in Tropical Diseases, 1, 691604. https://doi.org/10.3389/fitd.2021.691604
Dominguez, S. R., & Blokesch, M. (2024). The intersection between host–pathogen interactions and environmental signals in Vibrio cholerae pathogenesis. Trends in Microbiology, 32(5), 380–392. https://doi.org/10.1016/j.tim.2024.02.004
Sakib, S. N., Reddi, G., & Almagro-Moreno, S. (2018). Environmental role of pathogenic traits in Vibrio cholerae. Journal of Bacteriology, 200(15), e00795-17. https://doi.org/10.1128/JB.00795-17
Prentice, J. A., Bridges, A. A., & Bassler, B. L. (2022). Synergy between c-di-GMP and quorum-sensing signaling in Vibrio cholerae biofilm morphogenesis. Journal of Bacteriology, 204(10), e00249-22. https://doi.org/10.1128/jb.00249-22
Ghandour, R., & Papenfort, K. (2023). Small regulatory RNAs in Vibrio cholerae. microLife, 4. https://doi.org/10.1093/femsml/uqad030/7199165
Gubensäk, N., Sagmeister, T., Buhlheller, C., Geronimo, B. D., Wagner, G. E., Petrowitsch, L., Gräwert, M. A., Rotzinger, M., Berger, T. M. I., Schäfer, J., Usón, I., Reidl, J., Sánchez-Murcia, P. A., Zangger, K., Pavkov-Keller, T. (2023). Vibrio cholerae’s ToxRS bile sensing system. eLife, 12, e88721. https://doi.org/10.7554/eLife.88721
Huber, M., Papenfort, K., & Bassler, B. L. (2022). An RNA sponge controls quorum sensing dynamics and biofilm formation in Vibrio cholerae. Nature Communications, 13(1), 3526. https://doi.org/10.1038/s41467-022-35261-x
Jubyda, F. T., Nahar, K. S., Barman, I., et al. (2023). Vibrio cholerae O1 associated with recent endemic cholera shows temporal changes in serotype, genotype, and drug-resistance patterns in Bangladesh. Gut Pathogens, 15, 17. https://doi.org/10.1186/s13099-023-00537-0
Kumar, A. (2020). Vibrio pathogenicity island-1: the master determinant of cholera pathogenesis. Frontiers in Microbiology, 11, 578. https://doi.org/10.3389/fmicb.2020.00757
Lee, D., Choi, H., Son, S., Bae, J., Joo, J., Kim, D. W., & Kim, E. J. (2023). Expression of Cholera Toxin (CT) and the Toxin Co-Regulated Pilus (TCP) by Variants of ToxT in Vibrio cholerae Strains. Toxins, 15(8), 507. https://doi.org/10.3390/toxins15080507
Lembke, M., Pennetzdorfer, N., Tutz, S., Koller, M., Vorkapic, D., Zhu, J., & Blokesch, M. (2018). Proteolysis of ToxR is controlled by cysteine-thiol redox state and bile salts in Vibrio cholerae. Molecular Microbiology, 110(5), 796–810. https://doi.org/10.1111/mmi.14125
Li, X. (2024). Diversity and complexity of CTXΦ and pre-CTXΦ families. Frontiers in Microbiology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509585/
Maciel-Guerra, A., et al. (2024). Core and accessory genomic traits of Vibrio cholerae O1 linked to transmission and disease severity. Nature Communications, 15, 52238-0.
Mageto, L. M., Aboge, G. O., Mekuria, Z. H., Gathura, P., Juma, J., Mugo, M., Kebenei, C. K., Imoli, D., Ongadi, B. A., Kering, K., Mbae, C. K., & Kariuki, S. (2025). Genomic characterization of Vibrio cholerae isolated from clinical and environmental sources during the 2022-2023 cholera outbreak in Kenya. Frontiers in microbiology, 16, 1603736. https://doi.org/10.3389/fmicb.2025.1603736.
McDonald, N. D., Regmi, A., Morreale, D. P., et al. (2019). CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics, 20, 105. https://doi.org/10.1186/s12864-019-5439-1
Pant, A., Bag, S., Saha, B., Verma, J., Kumar, P., Banerjee, S., … Das, B. (2020). Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23762–23773. https://doi.org/10.1073/pnas.2006283117
Montero, D. A., & Rodríguez, L. A. (2023). Vibrio cholerae: Classification, pathogenesis, immune response, and clinical management. Frontiers in Medicine, 10, 1155751. https://doi.org/10.3389/fmed.2023.1155751
Ochi, K., Mizuno, T., Samanta, P., Mukhopadhyay, A. K., Miyoshi, S. I., & Imamura, D. (2021). Recent Vibrio cholerae O1 Epidemic Strains Are Unable To Replicate CTXΦ Prophage Genome. mSphere, 6(3), e0033721. https://doi.org/10.1128/mSphere.00337-21
Ramamurthy, T., Nandy, R. K., Mukhopadhyay, A. K., Dutta, S., Mutreja, A., Okamoto, K., Miyoshi, S. I., Nair, G. B., & Ghosh, A. (2020). Virulence Regulation and Innate Host Response in the Pathogenicity of Vibrio cholerae. Frontiers in cellular and infection microbiology, 10, 572096. https://doi.org/10.3389/fcimb.2020.572096
Rasmussen, T., Jensen, R. B., & Skovgaard, O. (2007). The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle. The EMBO Journal, 26(13), 3124–3131. https://doi.org/10.1038/sj.emboj.7601747
Racault, M.-F., Abdulaziz, A., George, G., Menon, N., C, J., Punathil, M., McConville, K., Loveday, B., Platt, T., Sathyendranath, S., & Vijayan, V. (2019). Environmental Reservoirs of Vibrio cholerae: Challenges and Opportunities for Ocean-Color Remote Sensing. Remote Sensing, 11(23), 2763. https://doi.org/10.3390/rs11232763
Saha, D., Aggarwal, S., & Singh, A. (2023). Attenuation of quorum sensing system and virulence in Vibrio cholerae by phytomolecules. Frontiers in Microbiology, 14, 1205387. https://doi.org/10.3389/fmicb.2023.1205387
Sajeevana, A., Ramamurthy, T., & Solomon, A. P. (2024). Vibrio cholerae virulence and its suppression through the quorum-sensing system. Critical Reviews in Microbiology. Advance online publication. https://doi.org/10.1080/1040841X.2024.2320823
Takahashi, E., Ochi, S., Mizuno, T., Morita, D., Morita, M., Ohnishi, M., Koley, H., Dutta, M., Chowdhury, G., Mukhopadhyay, A. K., Dutta, S., Miyoshi, S. I., & Okamoto, K. (2021). Virulence of Cholera Toxin Gene-Positive Vibrio cholerae Non-O1/non-O139 Strains Isolated From Environmental Water in Kolkata, India. Frontiers in microbiology, 12, 726273. https://doi.org/10.3389/fmicb.2021.726273
van Kessel, J. C. (2024). Vibrio cholerae: A fundamental model system for bacterial genetics. Journal of Bacteriology, 206(11), e00248-24. https://doi.org/10.1128/jb.00248-24
Vezzulli, L., Baker-Austin, C., Kirschner, A., Pruzzo, C., & Martinez-Urtaza, J. (2020). Global emergence of Vibrio cholerae and other pathogenic vibrios in natural aquatic environments. Nature Reviews Microbiology, 18(11), 697–713. https://doi.org/10.1038/s41579-020-0402-3
Walton, M. G., Cubillejo, I., Nag, D., & Withey, J. H. (2023). Advances in cholera research: from molecular biology to public health initiatives. Frontiers in microbiology, 14, 1178538. https://doi.org/10.3389/fmicb.2023.1178538.
Zhang, Q., Alter, T., & Fleischmann, S. (2024). Non-O1/Non-O139 Vibrio cholerae — an underestimated foodborne pathogen? An overview of its virulence genes and regulatory systems involved in pathogenesis. Microorganisms, 12(4), 818. https://doi.org/10.3390/microorganisms12040818